

Probabilistic tropical cyclone inundation hazard assessment, Lenakel, Tanna Island, Vanuatu

Herve Damlamian, **Moritz Wandres**, Antonio Espejo, Judith Giblin, Naomi Jackson, Zulfikar Begg, Poate Degei, Salesh Kumar, Jens Kruger, Tony Kanas, Rodhson Aru, and Noel Naki

CASE STUDY: CYCLONE WINSTON 2016

CASE STUDY: CYCLONE WINSTON

Fiji:

WINSTON

Wave Run-up in Vanua Levu

Inundation Extent in Vanua Levu

Case study: Cyclone Winston

CASE STUDY: CYCLONE WINSTON

CASE STUDY: CYCLONE WINSTON

Maximum Wave Height

Lenakel, Tanna

Declared a town in 2015

Population: 14,000

Goal: Provide likelihood of hazard to inform urban planning and evacuation road

Hazards:

- Swell
- TC Wind & Inundation
- Tsunami

Improved Tropical Cyclone EWS A regional priority

TC Pam wave model

2015, TC PAM - IMPACT

Tuvalu:

- AU\$ ~14M
- 25% of TV 2013 GDP
- 41% population affected

Vanuatu:

- 16 death
- **>50%** population affected (166,000)
- 17,000 buildings affected
- AU\$ ~619M Damage and Loss
- 64.1% of GDP

Other countries affected: New Caledonia, Solomon Island, Kiribati, New-Zealand.

TC PAM: BEFORE / AFTER USING AERIAL PHOTOGRAPH TAKEN DURING LIDAR CAMPAIGN (2012)

TC PAM : Before / After using Aerial photograph taken during LiDAR campaign (2012)

EXTREME TC WAVE RUN-UP, TC PAM

Epau, run-up between 6.0 - 7.0m

Epike, run-up between 6.0 - 7.2m

CREATE DATABASE OF 10,000 YEARS OF CYCLONE TRACK FOR LENAKEL

- Using Open Source Tropical Cyclone Risk Model (TCRM) from Geoscience Australia
- Stochastic approach based on Historical Cyclone Track Database (IBTRACS)
- ~16000 cyclone generated over a 10,000 year period TC Genesis probability 1000 10^{-} 10°S 975 **Genesis** probability 1) 950 $p_c(t -$ 2 925 0. 900 20°S 130 875 pearsonr = 0.98; p = 0850 1100 550 950 1000 850 900 $p_c(t)$ 140°E 150°E 160°E 170°E 180°

CYCLONE PARAMETERIZATION

TC TRACK MODIFICATION

-14°30'

META-MODELLING OF EXTREMES

WATER LEVEL CONDITIONS

Mean Level of the Sea (MLS): 20 years HYCOM Reanalysis (1992-2012) Map monthly behavior (probabilistic distribution) • Empirical Distribution MLOS for July Empirical Distribution MLOS for November Empirical Distribution JUL NOV -0.05 0.00 -0.15 -0.10 -0.05 0.00 0.05 010 -0.20 -0.15 -0.10 0.00 0.10 MLOS (m MLOS (m) MLOS (m)

Tide:

- Harmonic Analysis on the JICA Tide gauge in Lenakel (2015-)
- Map monthly behaviour (probabilistic Distribution)

Storm Surge:

- Inverted barometric pressure: from Cyclone Central Pressure
- Wind Setup: Include Wspd and Wdir as part of Cyclone Inundation Scenario

META-MODELS FOR PROBABILISTIC INUNDATION SCENARIOS

Based on Camus et al, 2011

Scenarios characterized by 6 variables: Hs, Tp, Dp, Tide, SS, MLOS

Dynamic Modelling (Xbeach-GPU)

INUNDATION MODELLING ON REEF FRONTED ISLAND

• XBEACH_GPU :

(https://github.com/CyprienBosserelle/xbeach_gpu).

- Fast especially with high end graphic cards
- Provides suitable platform to model extreme wave height condition (using very low CFL calculation i.e. down to CFL=0.0001)
- Calibration
 - 6 month deployment
 - 4 wave events with Hs>3m used in calibration
 - 350 runs
- Obs.Vs Sim at the shore for Hs>3m:

Wave Setup error: 0.07m IG error: 0.02m Short Wave error: 0.06m

- VIRTUOSO I Hz / continuous
- TWR I Hz / 2048s burst / 3hrs
- AWAC

TC INUNDATION HAZARD MAPPING

 Aggregated Inundation Map (~10 scenarios)

8 TC Inundation Hazard map:

- RP: 25,50,100,200 years
- SLR: Present & RCP8.5 (2090)

PROBABILISTIC INUNDATION MAPS

RISK ASSESSMENT TO SUPPORT DECISION MAKING

RISK = LIKELIHOOD × CONSEQUENCE

		CONSEQUENCE				
		Insignificant	Minor	Moderate	Major	Catastrophic
ГІКЕГІНООД	Almost Certain	Low	Medium	High	Extreme	Extreme
	Possible	Low	Low	Medium	High	Extreme
	Rare	Low	Low	Low	Medium	High

LONDON, KIRITIMATI, KIRIBATI

Future Improvements

• Include **Radius of Max.Wind** as a 5th cyclone parameter

- Investigate its application as a TC inundation forecast system
- Photogrammetry vs LiDAR topography data

